Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

缓存穿透

概念

缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是查询失败。当在高并发的情况下,缓存没有命中,于是请求都打在了数据库上面,就会给数据库造成了很大的压力。

解决方案

布隆过滤器

布隆过滤器是一种数据结构,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力

image-20210730143934511

缓存空对象

当存储层不命中后,即使返回空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源

image-20210730144415109

但是这种方法会存在两个问题

1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多空值的键

2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响

缓存击穿

这里需要注意和缓存击穿的区别,缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。

当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访 问数据库来查询最新数据,并且回写缓存,会导使数据库瞬间压力过大。

解决方案

设置热点数据永不过期

从缓存层来看,没有设置过期时间,所以不会出现热点key过期后产生的问题

加互斥锁

分布式锁:使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。

缓存雪崩

缓存雪崩是指,在某一个时间段,缓存集中过期,大量的请求直接打在数据库上面,压力瞬间变大。

其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然 形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就 是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。

解决方案

redis高可用

这个思想的含义是,既然redis有可能挂掉,那么我就多增设几台redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群(异地多活)。

限流降级

这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量,比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

数据预热

数据预热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中,在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。

评论